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Due to the increasingly stringent standards, it is important to assess whether the proposed
emission reduction will result in ambient concentrations that meet the standards. The
Software for Model Attainment Test—Community Edition (SMAT-CE) is developed for
demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves
computational efficiency and provides a number of advanced visualization and
analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical
measurements of air quality parameters and simulated air pollutant concentrations under
a number of emission inventory scenarios to project the level of compliance to air quality
standards in a targeted future year. An application case study of the software based on the
U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of
demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed
emission control policy.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

First-principle atmospheric models are essential tools that
provide scientific data for formulating emission reduction
strategy to attain a targeted air quality goal. The Community
Multiscale Air Quality (CMAQ) model is one of the atmospheric
models widely applied for forecasting air pollutant concentrations
under future emission scenarios (Chemel et al., 2014; Shrestha et al.,
2009; Xing et al., 2011). However, a first principlemodel such as CMAQ
is complicated and computationally expensive because of the

comprehensive chemical transport mechanisms parameterized in
themodel (Cheng et al., 2007; Gao and Zhang, 2014; Li et al., 2011;Ma
et al., 2013; Sanjose et al., 2007; Zhang et al., 2012). In addition, the
models typically generate large datasets on a non-conventional
operating platform and in a file system that are tedious to manage.
This poses a challenge in extractingmodel analysis for many policy
makers who are not accustomed to analyze model data and
therefore there is a need to develop software tool with a
user-friendly interface to address analytical need of model data for
policy making.
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To facilitate the analysis and visualization of atmospheric model
output, we have developed a suite of software packages that support
the decision making for integrated air quality management. These
packages (available and free download at http://www.abacas-dss.
com/) include: the Response Surface Model—Visualization Analysis
Tool (RSM-VAT) to provide real-time estimates of air quality
concentrations in response to emission reductions from anthropo-
genic sources, the Software for Model Attainment Test—Community
Edition (SMAT-CE) to perform attainment assessments for the
National Ambient Air Quality Standard (NAAQS) under various
emission reductions, and the Environmental Benefits Mapping and
Analysis Program—Community Edition (BenMAP-CE) to evaluate
health and economic benefits associated with improved air quality
(Fig. 1). The software suite improves the analytical efficiency of
atmospheric model data under changed air emission scenarios
(RSM-VAT), assists evaluation of emission reduction efficacy in
relation to air quality standards (SMAT-CE), and extends air quality
assessment to health and cost benefits (BenMAP-CE). In this study,
we present the methodology and demonstrate the application of
SMAT-CE for the design values of annual PM2.5 and 8-hour O3 in the
U.S. The design value (DV) is a statistic of monitored pollutant
concentration at a specific location used by the U.S. Environmental
Protection Agency (US EPA) to determine whether or not the location
attains the NAAQS (US EPA, 2008b). The DV of 8-hour O3 for each
monitored location is calculated as the 3-year average of the fourth
highest daily maximum 8-hour O3 concentration in each year (US
EPA, 1997). TheDVof annual PM2.5 is the annualmeans averagedover
a continuous three year period (US EPA, 2013). The design goal of
SMAT-CE is to predict the future design value (DVF) under a given air
emission scenario in a future year. Such capability allows policy
maker to determine if proposed emission reductions will result in
attainment of the NAAQS within a regulatory timeframe.

The regional haze and photochemical smog (mainly O3) are
two of the concerned air pollutants due to their impacts to public
health and welfare (Gao et al., 2014; Sampson et al., 2013; Singh et
al., 2012; Wang et al., 2014; Wei et al., 2014). Air quality standards
have been set to improve the air quality (Chai et al., 2014; US EPA,
2008a, 2012b). As the next generation of USEPA MATS (Modeled
Attainment Test Software) (USEPA, 2012a), SMAT-CE is developed
to estimate whether targeted air quality can be attained under
various emission control scenarios. The objectives of this study
are to describe the functional design and calculation principles of

SMAT-CE, evaluate the software performance compared to MATS,
and demonstrate the application of the software for the attainment
of annual PM2.5 and 8-hour O3.

1. Methodology

1.1. Evaluation principles

SMAT-CE statistically estimates the DVF using the monitoring
and model data of a base year, and the model data of the
targeted future year. The monitoring data represent the air
quality of the base year. Themodel data of the base and future
years are used for projecting the design value (DVB) in a base
year to DVF. The detailed methodology and model implemen-
tation are described as follows.

The DVF near a monitoring site i is estimated as:

DVFð Þi ¼ DVBð Þi � RRFð Þi ð1Þ

where, (DVB)i (ppb or μg/m3) is the DVB monitored at site i,
(RRF)i is the dimensionless relative response factor (RRF)
calculated for site i using model data, and (DVF)i (ppb or μg/m3)
is the DVF predicted at site i.

TheDVs for both themonitoring sites (point estimates ofDV)
and for each grid cell (spatial field estimates of DV) are required
to estimate DVFs. Several methodologies can be applied to
calculate the DVB: (1) the design value of the designated design
value period (i.e., 2006–2008), (2) the design value of the design
value period that straddles the baseline inventory year (e.g., the
2006–2008 design value period for a base year of 2007), and (3)
averaging the design values of three different periods which
include the base year (e.g., the 2005–2007, 2006–2008, and
2007–2009 design value periods for a base year of 2007).

For point estimates, DVBs are calculated from observa-
tional data using the thirdmethodologymentioned above.We
examined the sensitivity of the years used to calculate the
DVBs at the monitoring sites. The sensitivity test results
demonstrate that the weighted average of design values
for the three design value periods over a five year period
best represents the baseline concentrations, while taking
into account the year-to-year variability of emissions and
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Fig. 1 – Decision support software tools including an air quality simulation tool RSM-VAT, a post analysis tool for health
benefit, i.e., BenMAP-CE and a modeled attainment test tool SMAT-CE.
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meteorology. Additionally, the running average DV gives a
lower data variability compared to the DV individually (USEPA,
2007). This methodology requires at least five years of observa-
tional data at each monitoring site. For the sites with less than
5 years of data, the DVB will be calculated using an average of
two or single design value depending on the length of
continuous data availability of 4 or 3 years, respectively. A
monitoring site is excluded from the attainment test if there is
less than three years of continuous data.

The PM2.5 is calculated using 8 components: nitrate (NO3
−),

sulfate (SO4
2−), organic carbon (OC), soil and other inorganic mass

(crustal), elemental carbon (EC), ammonium (NH4
+), salt, and

particle boundwatermass (PBW) attached to sulfate, nitrate, and
ammonium. These concentrations are utilized to estimate the
DVFs of PM2.5. Since most of PM2.5 monitoring sites are not
co-located with a speciation site, the component-specific
baseline values of each component for the PM2.5 monitors are
calculated as weighted average of observed component-specific
baseline values from nearby speciation monitors by drawing
Thiessen polygons (Browne, 2007) around the PM2.5 monitoring
site.

For spatial field estimates, the DVB is calculated as the
weighted average of DVBs measured in adjacent monitoring
sites. The weighting factor can be calculated by three different
methods depending on users' choices. The default approach is
calculated by the distances between the cell center of interest
and surrounding monitoring sites after drawing Thiessen
polygons around the cell:

WeightA ¼
1
dA

1
dA

þ 1
dB

þ 1
dC

þ 1
dD

ð2Þ

where, dA, dB, dC and dD are the distances from a target grid cell
E to monitoring sites A, B, C and D, and WeightA is the
weighing factor for site A. The second approach is to calculate
the weighting factor using the square of the distances
between the cell center and the surrounding monitoring
sites. The third approach is to use the equal weighting factor
for each neighboring monitoring site.

The DVB at site E is the sum of the weighting factor for
each neighboring monitoring site multiplying the DVB as
measured at the monitoring site:

GridcellE;baseline ¼
Xn
i¼1

Weighti �Monitori ð3Þ

where, n is the number of neighboring sites, Weighti is the
weighting factor for site i, Monitori is the DVB at site i and
GridcellE,baseline is the DVB at grid cell E.

SMAT-CE also lets user choose whether to usemodel data for
adjusting the spatial field estimates. This use of model data is
referred as a gradient adjustment. The gradient adjusted DVB at
grid cell E is the sum of products of the weighting factor for each
monitoring site, the DVB asmeasured at themonitoring site and
a gradient adjustment:

GridcellE;baseline ¼
Xn
i¼1

Weighti �Monitori � Gradient Adjustmenti;E:

ð4Þ

A gradient adjustment is the ratio of the baseline model
data for the grid cell of interest to the baseline model data for
the grid cell containing the neighboring monitor:

Gradient Adjustmenti;E ¼ ModelE;baseline
Modeli;baseline

ð5Þ

where, ModelE,baseline is the baseline model data at grid cell E,
and Modeli,baseline is the baseline model data of the grid cell
containing monitor i.

The drawing of Thiessen polygons and the identification of
neighboring monitors are achieved by an improved Voronoi
Neighbor Averaging (VNA) algorithm following the standard
VNA algorithm downloaded from the DotSpatial website
(Microsoft, 2009). The improved VNA algorithm increases the
computational efficiency by setting a fixed radius (7°,measured
in latitude and longitude) around the cell of interest to identify
neighboring monitors.

The RRF is calculated by taking the ratio of the future
modeled concentration near a monitoring site (averaged over
multiple days) to the baselinemodeled concentration near the
monitoring site (over the same days):

RRFi ¼
Modeli;future
Modeli;base

ð6Þ

where, Modeli,future is the mean of future modeled concentra-
tion over multiple days at site i, Modeli,base is the mean of
baseline concentration over the same days at site i, and RRFi is
the RRF at site i.

The procedure for calculating a RRF is divided into two
steps. The first step is to identify grid cells near a monitoring
site. According to US EPA modeling guidelines (US EPA, 2007),
the number of cells used in calculating the averages depends
on the spatial resolution of the model grids (Table 1). In the
case study, the model grid resolution is 12 km and therefore
concentration average of 3 × 3 grid cells applies. The second
step is to calculate a RRF. For 8-hour O3, we use the highest
8-hour daily maximum concentrations in the nearby grid cells
for each day both in the base and future years. The RRF value
is calculated by taking the ratio of the average of the highest
8-hour daily maximum concentration of the future year to
that of the base year. For annual PM2.5, a separate RRF called
component-specific RRF is calculated for each of the PM2.5

components. The component-specific RRF is the ratio of the
mean of the quarterly averaged daily predictions of the future
year t2 that of the base year across the nearby grid cells.

There is uncertainty accompanying model predictions
when predicting observed air quality at any given location in
the base and future years. Uncertainty arises from various
sources, e.g., limitations in the formulation of the model and
the model inputs including meteorological and other input

Table 1 – Recommendations for nearby grid cells for RRF
calculation (US EPA, 2007).

Size of individual cell
(km)

Size of the array of nearby cells
(unitless)

4–5 7 ×7
5–8 5 × 5
8–15 3 × 3
>15 1 × 1
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data base, and uncertainty in forecasting future levels of
emissions. Since the RRF is a crucial parameter to predict the
DVF based on the modeled concentrations in base and future
years, the model results should be verified before preparing
an attainment test. We recommend two steps for reducing
model uncertainties. Firstly, an analysis should be preceded
to verify the rationality of model input data by analyzing
available air quality, meteorological and emissions data.
Then, the model results should be compared with observa-
tional data to ensure the credibility of the results. In the case
study, the input model files are provided and verified by U.S.
EPA. As shown in Fig. 2, the CMAQmodel can well capture the
pattern of data variation observed at the monitoring site with
a mean fractional bias (MFB, in Eq. (7)) ranging from −45.29%
to 33.85% for annual PM2.5 and from −18.81% to 19.68% for
8-hour O3. The data used for model evaluation include those
observed in 50 monitoring sites in eastern U.S. chosen
randomly (Appel et al., 2007, 2008).

The DVF is calculated by multiplying DVB with RRF. The DVF
for PM2.5 is more complicated than O3. The component-specific
baseline concentrations are multiplied by component-specific
RRFs to estimate the component-specific future concentrations
for each PM2.5 component. Then the DVFs of PM2.5 are estimated
by adding the future concentrations of the eight PM2.5 compo-
nents. If the future design values are less than the concentration
specified in theNAAQS, itmeans all themonitoring sites pass the
test.

1.2. Operation environment

SMAT-CE is developed for running on Windows 7 operation
system using a personal computer. Table 2 shows operational
environment of the case study.

1.3. Software design

Designed with a friendly interface to provide a superior user
experience, SMAT-CE consists of a configuration, an analysis
and a data viewermodule (Fig. 3). Configurationmodule defines
the input parameters and operation settings. The configuration
settings are saved in a configuration (CFG) file. User can run
SMAT-CE with a saved CFG file or on-screen settings to perform
a new attainment test. The CFG files can also be used as
templates to create a series of CFG files for batch job function.
Users canutilize either theGUI or a batch file to run theAnalysis
module. The batch file is useful for loadingmultiple CFG files for
batch processing. The results are saved in the same file
directory for the CFG files. Data Viewer module provides six
types of data reporting for the attainment test results, including
GIS, map, data table and chart for results, as well as the
configuration settings and execution logs (Fig. 3). The six
sub-modules are integrated with the Data Viewer interface.

2. Results and discussion

2.1. Comparison of model results and software performance

The performances of SMAT-CE and MATS are compared using
the model output for annual PM2.5, daily PM2.5, O3 and visibility
in a contiguous U.S. domain in terms of data accuracy,
computational efficiency and user friendliness. The same
input data and settings are used for both SMAT-CE and MATS.

2.1.1. Comparison of attainment test results
SMAT-CE uses the improved VNA algorithm to enhance
computation efficiency while MATS applies a modified VNA
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Fig. 2 – Spatial variation and mean fractional bias (MFB, in Eq. (7)) of CMAQ model and observations for annual PM2.5 (a) and
8-hour O3 (b) at 50 monitoring sites in the eastern U.S. chosen by random sampling.

181J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 9 ( 2 0 1 5 ) 1 7 8 – 1 8 8



algorithm which is not an open-source program. To evaluate
the improved VNA algorithm of SMAT-CE, we compared the
neighboring monitors obtained by three VNA algorithms
implemented in SMAT-CE, MATS and ArcGIS. ArcGIS (version
9.3) has been widely applied for generating Thiessen Polygon
(Han, 2010; Shen and Cao, 2010). The results show that
SMAT-CE replicates the neighboring monitors obtained by
ArcGIS. For example, the neighboring monitors (A, B, C, D, E
and F) around target monitor G are shown in Fig. 4. MATS can
get similar results but miss one neighboring monitor F in
Fig. 4. The agreement between SMAT-CE and ArcGIS indicates
that the improved VNA algorithm of SMAT-CE is more reliable
than that of MATS.

The results of the two cases in Eastern U.S. are compared
to evaluate the difference between SMAT-CE and MATS. In
one case (Case #1), same configuration and input files were
applied for both tools. In the other case (Case #2), the effect of
VNA algorithms was excluded to identify if there are other
computational differences between the two. Fig. 5 shows the
comparison of spatial field estimates for annual PM2.5 in the
future year between SMAT-CE and MATS for Case #1 and Case
#2. The red points in the right panel of Fig. 5 are the locations
of monitoring sites used for calculating the spatial field
estimates of DV. The results of SMAT-CE and MATS are
almost the same as shown in Fig. 5a, the main difference
occurs at the boundary ofmodel domain or at a few areas with
scarcemonitoring sites. Excluding the deviation caused by the
two VNA algorithms, SMAT-CE replicates the calculation
results of MATS (Fig. 5b).

The mean fractional bias (MFB) is calculated to compare
the results of point estimates:

MFB ¼ 1
N

XN
i¼1

Cm−C0ð Þ
C0 þ Cm

2

� � ð7Þ

Table 2 –Main operational environment for the case
study.

Name Description

Hardware CPU Inter(R) I7–950 @3.06 GHz
Memory (RAM) 6.00 GB
Hard disk 1T 7200 r/min

Software Operation system 64-Bit Windows 7 Ultimate
GIS platform DotSpatial (Microsoft, 2009)

Map Data table Chart

Configuration file (CFG)

Calculation parameters
Input data parameters:

Output data parameters

Log & msg Config

Batch file (BAT)

Multiple CFG files

GIS

Configuration

Attainment test

Data Viewer

Monitor data 
Model data

Species 
monitor data

PM2.5
monitor data

VNA 
interpolation

Gradient 
adjustment

Species 
fractions

Baseline species
concentrations

Baseline PM2.5
design values

Model 
data

RRF

Add
 upFuture species

design values
Future PM2.5
design values

VNA 
interpolation

Baseline PM2.5
design values

VNA 
interpolation
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design value

Model 
data

RRF

Future O3
design values

O3
monitor data

Gradient 
adjustment

Modeling
domain

Modeling
domain

PM2.5 O3

Fig. 3 – Functional framework and operational process of SMAT-CE.
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where, N is the number of monitoring site, Cm is the predicted
DV of SMAT-CE at site i, and C0 is the predicted DV of MATS at
site i. Fig. 6 shows that themedian values of MFB for both Case
#1 and Case #2 are 0%. Only a few monitoring sites in Case #1
(Fig. 6a) have the MFB less than ±1%. After excluding the

effects caused by the different VNA algorithms, the results of
SMAT-CE and MATS are nearly identical (Fig. 6b).

2.1.2. Comparison of computational time
Three measures are adopted to improve computational
efficiency in SMAT-CE while keeping the data accuracy: (1)
SMAT-CE is coded with Microsoft Visual C#, which supports
multithread computation (Barbhuiya and Liang, 2012) and is
reported to have superior program operation efficiency com-
paring to JAVA and other programming languages on the
Windows system (Wikipedia, 2013a), (2) the time-consuming
calculation processes, such as spatial field estimates, the
complicated chemical speciation calculation and the VNA
algorithm, are optimized, and (3) data accessmode is optimized
to shorten the input data loading time during the calculation
(e.g., the latestmethod of DataReader (Wikipedia, 2013b) is used
to read large size input files).

SMAT-CE and MATS were run on the same platform
(Table 2) to evaluate the performance. Compared to MATS,
the computational speed of SMAT-CE increases by 40%–87%
for different analysis targets, which is mainly contributed by
the improved VNA algorithm and data access mode (Table 3).
The runtime of visibility is shortest since it calculates
visibility levels for 156 specific Class I Areas (Abt, 2012) only
and doesn't contain the time-consuming calculation process-
es. Because of the complicated chemical speciation calcula-
tion for PM2.5 (e.g., SO4

2−, NO3
−, etc.), the computing time of PM2.5

is longer than that of O3. The runtime of daily PM2.5 is shorter
than annual PM2.5 because the spatial field estimates are not
calculated for daily PM2.5. (See Table 4.)

A
B

C

D

E

F

Target monitor
G

Fig. 4 –Neighboringmonitors (A, B, C, D, E and F) identified by
drawing a Thiessen polygon around the target point G using
ArcGIS.

MATSSMAT-CE SMAT-MATS
a

 -0.2      -0.06      0.06        0.2 9          10          11          12

b

µg/m3 µg/m3

Fig. 5 – Comparison of spatial field estimates. (a) Case #1 and (b) Case #2 obtained by SMAT-CE and MATS.
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2.1.3. User-friendly design of SMAT-CE
Evolving and superior to MATS, SMAT-CE is an open-source
package. Its GUI is designed to facilitate streamline opera-
tions. It provides easy and quick air quality attainment
assessments. The data visualization and analysis functions
are shown in Fig. 7. The legacy MATS uses a pop-up window
for configuration settings and operations, which is not a
user-friendly design by forcing user to a separate window.
SMAT-CE is designed with an integrated functional framework
to improve user experience. The configuration settings are
arranged in a step-wise optional setting area in the left side of
the framework. User can click the “Next”/“Back” icon or the
sub-node to set the configurations sequentially. The execution
logs are displayed in the right panel. Configuration indicators
are utilized to remind users of the current status: green for
ready, red for error, and yellow for in progress. After the
computation is completed, the Data Viewer interface appears
for visualization and analysis of the results. The interfaces of
GIS, map, chart, data table, configuration and log are integrated
into one screen. Users can view the maps, graphs or the data
instantly in the right panel by clicking on the file lists on the left
panel. The configuration settings can be reviewed or revised by
returning to the setting area.

The Data Viewer module of MATS only allows user to load
result files and view these data in GIS map or data table.
Compared to MATS, SMAT-CE provides a full feature of data
visualization to analysis. GIS-based map and picture-based
map are two enhanced data visualization functions. The
GIS-based map function allows user to perform a variety of
mapping tasks, such as zooming based on different levels of

shapefiles of different spatial scales. The picture-based map
function is designed to improve the visualization efficiency. It
provides a quick overview of air quality changes in the study
domain. The speed for visualizing air quality surface by
picture-based map function is 18 times faster than that of
GIS-based map function (6.6 s/Map compared to 125.2 s/GIS)
for the results in the U.S. domain. The Chart and Data table
functions provide users with intuitive graphic and quantita-
tive information. Chart analysis helps policy makers compare
the effectiveness of air quality improvement. For example, it
displays the comparison bar charts for the baseline and future
values side by side to conveniently compare the air quality
before and after emissions control. The Data table function
allows users to examine the data specifically and output the
results with CSV extension.

2.2. Case study

The NAAQS for 8-hour O3 and PM2.5 are 75 ppb and 12 μg/m3,
respectively. The emission reduction measures in both
nonattainment and maintenance areas are anticipated to
achieve the air quality goals by 2020. SMAT-CE is applied to
test if the attainment can be achieved. Annual PM2.5 and
8-hour O3 were selected in the case study to demonstrate the
compliance of air quality at the monitoring sites in the U.S.
domain under the NAAQS.

The base year is 2007 and the future year for the emissions
reductions scenario is set to 2020. The 2020 control scenario
for annual PM2.5 is based on anthropogenic NOX, anthropo-
genic SO2, residential wood combustion and the direct PM2.5

emission reductions from non-EGU (Non-Electric Generating
Units) sources of 25%, 25%, 100% and 50% over the 2007 levels.
The 2020 control scenario for 8-hour O3 is based on the NOX

emission reductions from Area (NonPoint Area Sources), EGU
point (Electricity Generating Unit Point Sources), nonEGU
point (Non-Electricity Generating Unit Point Sources), Onroad
(Onroad Mobile Sources) and Nonroad (Nonroad Mobile
Sources) of 4%, 5%, 64%, 21% and 6%, as well as the VOC
emission reductions from Area, nonEGU point, Onroad and
Nonroad of 70%, 2%, 24%, and 4% over the 2007 levels. Table 2
lists the input data for the case study.

The base (2007) and future (2020) year attainment test
results of the monitoring sites are shown in Fig. 8 (the
nonattainment sites are marked in red). There are 379
nonattainment monitoring sites covering 28 different states
for PM2.5 in 2007 (Fig. 8a), mainly located in California and
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Fig. 6 – Comparison of point estimates: (a) Case #1 and (b)
Case #2 by box plot for SMAT-CE and MATS (N is 186, 185,
907 and 12 for annual PM2.5, daily PM2.5, O3 and visibility,
respectively).

Table 3 – Comparison of computational time of SMAT-CE
and MATS in a U.S. domain and the increasing ratio of
SMAT-CE: annual PM2.5, daily PM2.5, O3 and visibility.

Analyses Computing time (min)

MATS SMAT-CE Increasing ratio (%)

Annual PM2.5 248.87 103.80 58.29
Daily PM2.5 103.38 13.78 86.67
O3 29.08 17.38 40.23
Visibility 18.46 4.38 76.27

Table 4 – Input data of case study.

Data Description

Model
data

PM2.5 and
speciation

Daily or quarterly average speciated
CMAQ estimates for 6 PM2.5 species and
PM2.5

O3 Daily 8-hour average maximum CMAQ
estimates for O3

Monitor
data

PM2.5 Observed daily/quarterly average PM2.5

data
Speciation Observed daily chemically speciated fine

particle mass data
O3 Observed seasonal average 8-hour

maximum O3 data
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eastern U.S. Under the emissions control scenario in 2020, the
number of nonattainment sites dramatically will reduce to 25,
including 22 in California, 1 in Montana, 1 in Arizona and 1 in
Wisconsin (Fig. 8b). The result indicates that the emission
control of anthropogenic NOX, anthropogenic SO2 and PM2.5

from non-EGU sources is effective in accordance with the
current PM2.5 standard as specified in the NAAQS. States that
have the nonattainment sites are required to implement
additional emission control in 2020.

For 8-hour O3 standard, there are 41 states containing 551
nonattainment sites in 2007 (Fig. 8c). Under the 2020 emission
scenario, many regions will attain the current O3 standard.
There will be 62 nonattainment sites in 2020, including 48 in
California, 2 in Texas, 1 in Michigan, 2 in Pennsylvania, 1 in
Maryland, 1 in New Jersey, 3 in New York and 4 in Connecticut
(Fig. 8d). This suggests that the additional emission reduction
for NOX and VOC in 2020 is required to attain the current O3

standard of the NAAQS.
The function of spatial field estimates provides an

overview of air quality in the modeling domain. The spatial
fields of predicted air quality also allow an assessment of
whether the NAAQS is met at the locations without air

monitoring stations. Fig. 9a displays the annual PM2.5 DVFs
(“f_pm25_ann_DV”, μg/m3) of spatial field estimates. It shows
that the air quality in most areas will attain current PM2.5

standard under the 2020 emission scenario. The nonattainment
areas are concentrated in the western U.S. The results of the
spatial field estimates can be exported to BenMAP-CE (Fig. 1) for
evaluating the health and economic benefits of emission
reduction.

User can also view the detailed information of the
interested grid cell on clicks. For example, the annual PM2.5

DVB (“b_pm25_ann_DV”, μg/m3) and DVF can be shown in the
left bottom of the display area by clicking a cell (Fig. 9a). The
DV of the grid cell is calculated as the weighted average of DVs
of the neighboring monitoring sites based on Eqs. (1), (3) and
(7). The Chart function can examine the air quality change of
the neighboring monitoring sites around the target grid cell.
Fig. 9b shows the comparison bar charts for the annual PM2.5

DVBs and DVFs of the eight neighboring monitoring sites
around a grid cell. Most of the air quality data at these
neighboring monitoring sites are classified as nonattainment
in 2007. Under the 2020 emission scenario, attainment of the
current PM2.5 standard is achieved (Fig. 9b).

75 ppb

<= 60 281
60 - 65 62
65 - 70 163
70 - 75 289

> 75 551

Symbol Values
(µg/m3) Count

75 ppb

<= 60 616
60 - 65 313
65 - 70 250
70 - 75 105

> 75 62

Symbol Values
(µg/m3) Count

c d
12 µg/m312 µg/m3

a b

<= 6 76
6 - 8 281
8 - 10 388
10 12 82
> 12 25

Symbol Values
(µg/m3) Count

<= 6 24
6 - 8 82
8 - 10 148
10 12 219
> 12 379

Symbol Values
(µg/m3) Count

Base year Future year

Fig. 8 – Attainment test results for demonstrating the 8-hour O3 (a and b) and annual PM2.5 (c and d) compliance with the
NAAQS under the proposed emission scenarios, respectively. The base year is 2007 and the future scenario is set to 2020; the
2020 control scenario for annual PM2.5 is based on anthropogenic NOX, anthropogenic SO2, residential wood combustion and
the direct PM2.5 emission reductions from non-EGU (Non-Electric Generating Units) sources of 25%, 25%, 100% and 50% over
2007 levels; the 2020 control scenario for 8-hour O3 is based on the NOX emission reductions from Area (NonPoint Area
Sources), EGU point (Electricity Generating Unit Point Sources), nonEGU point (Non-Electricity Generating Unit Point Sources),
Onroad (Onroad Mobile Sources) and Nonroad (Nonroad Mobile Sources) of 4%, 5%, 64%, 21% and 6%, as well as the VOC
emission reductions from Area, nonEGU point, Onroad and Nonroad of 70%, 2%, 24%, and 4% over 2007 levels.
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3. Conclusions

This article describes the development and application of an
attainment test tool for air quality standards, SMAT-CE. The
package uses spatial statistical method to combine observa-
tional data with model data for air quality attainment
assessments aiming to provide a better scientific support for
air quality management. SMAT-CE significantly enhances the
performance and functionalities over MATS while retains the
calculation accuracy and core functions. The redesigned
framework of SMAT-CE greatly improves the computational
speed, user-friendliness, visualization and analysis capability.
The case study in a U.S. domain demonstrates that SMAT-CE
can effectively perform the attainment tests for PM2.5 and O3,

and assist in policy decision making by visualizing the
attainment tests results.

The evaluation principles and methodology implemented
in SMAT-CE are universally applicable in other nations or
regions. Users are advised to follow the format of U.S. case
included in the installation file to prepare the input data and
use SMAT-CE internationally.
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